Current and Past Master’s Students

Thesis and Semester Projects



[16] Understanding the Role of Municipalities in National Energy Transition for Netherlands

Jaromir Bogdanovski

EPA @ TPM, TU Delft [Apr 2020 - Sep 2020]

[15] Affecting Behavior Patterns of Citizens using Language-based Microtargetting

Manos Leontaris

EPA @ TPM, TU Delft [Apr 2020 - Sep 2020]

The focus of this work is the creation and application of an experimental framework that tests the effectiveness and the impacts of micro-targeted ads. Micro-targeted ads have been used extensively by both political and retail carriers to sway peoples’ opinion, but there haven’t been any academic studies (in an environmentwhich is not controlled) that explore the impacts and the effects of micro-targeted ads. To this end the idea is to use a measurable variable (in this case the misplaced trash in The Hague) and throw generalized (non micro-targeted) ads along with micro-targeted ads, both of them aiming to reduce misplaced trash-bags. The ads will be sent to specific neighborhoods in The Hague through Facebook. The ad itself is considered a “nudge”(an intervention that hints towards behavioral change without forcing it). The end goal is threefold: • Measuring the effectiveness of a micro-targeted ad versus a generalized one. • Checking the impact of privacy respecting and ethical micro-targeted ads used for social welfare improvement. • Giving public policy advice ideas based on the results of the work.

[14] Prediciting Bus Ridership using Trip Planner Data

Ziyulong Wang

EPA @ TPM, TU Delft [Apr 2020 - Sep 2020]

[13] Investigating the Role of Points of Interest in Estimating Mobility Patterns in Cities

Karan Pappala

EPA @ TPM, TU Delft [Apr 2020 - Sep 2020]

[12] Understanding the Impact of AirBnB on the Social Fabric of Cities: A Case of Amsterdam

Fabio Tejedor

EPA @ TPM, TU Delft [Apr 2020 - Sep 2020]

[11] Assessing time resilience of public transit networks using London Underground data

Jakob Serlier [BSc Student]

BSc @ TPM, TU Delft [Feb 2020 - July 2020]

The motivation behind this study is to explore the importance of disruption time in public transport network resilience, and how to measure the changing impact over time. We have proposed a methodology to model a non-cascading time-dependent network model, estimating changing passenger loads in a public transport network. Our models, created using empirical passenger data from the London Underground, show that the network is not only most vulnerable during peak-hours to increased passenger loads, but in addition, the impact disruptions on the network change and the highest during peak-hours at certain locations. One of the goals of this research was to explore the topological metrics which identify time-dependent critical network links. In this study, betweenness has shown to be a valuable indicator of link criticality when using our model approach. Considering capacity utilization as an important performance metric, disruptions of high-impact non-bridge links showed a small decrease in capacity utilization in preceding and succeeding links and a more significant increase in capacity utilization for parallel links. This parallel effect was less significant in terms of capacity utilization for non-bridge links which have a low betweenness centrality, instead effecting the capacity utilization of neighboring links in a more diffuse manner. Finally, we expected to see a spatial change in the effect of disruption events over time, but the analysis of our model results did not reflect this expectation. The results primed exciting directions for future research, and has given us valuable initial insights on time dependency of public transport networks.

[10] Estimating Factors that Influence Migration Flows in Cities

Jochem Vlug

EPA @ TPM, TU Delft [Feb 2020 - July 2020]

Migrants are moving in great numbers towards urban areas as a result of urbanization and drivers such as political-, economical- and climate crises. The influx of new people brings new challenges for cities and municipalities to provide for a suitable environment for new and existing citizens whilst preventing adverse effects to occur. Current literature describes the dynamics of the city using effects such as segregation, gentrification and urban decay. However, the changing character of urban areas is not linked with the decision-making behavior of citizens in current literature. Furthermore, the dynamics of urban areas are rarely observed from a meso-scale perspective. This research aims to describe the relation between migration patterns and changes to the fabric of the city. A conceptual model on the dynamics involved in observing decision-making of citizens and observing changes to the city fabric is made. Using real-world data of the city of The Hague in The Netherlands, a Data-Driven Agent-Based model is made in Netlogo. Data analysis on the outcomes of the model using Python provide a better understanding of the impact of migration on the changes to the city fabric. The model output describes the impact on the city caused by the influx of migrants. More migrants entering the city can drastically increase homelessness or the “pushing out” of citizen groups because of housing shortages. This is most prevalent for the poorest citizens, since social rent housing is first to become scarce when more people enter the city. An increase in income inequality or a decrease in average migrant income results in even more pronounced housing shortages. The model simulates 6 policy interventions for the municipality of The Hague. The model shows that all policies that increase housing options significantly increases well-being of citizens. However, the policies that try to improve safety and health do not show an increase in well-being of citizens. By means of historical validation the model is tested for validity. The model is able to describe much of the decision-making behavior of migrants and citizens. However, for certain ethnicities, the model is currently unable to describe the decision-making process in such a way that it can represent the observed real-world moving patterns. A framework has been presented that can be used to better explain the impact of migration on cities. Furthermore, the conceptual model can be applied to different aspects of city dynamics, for instance the transport or energy sector. The ABM shows that current housing options and expected influx of migrants become problematic within the coming 10 years. An indication of the usefulness of proposed policy interventions is presented. More research and surveys are needed to better understand these mechanics and their relation to changes to the fabric of the city. Additional research into the changes to the neighborhood amenities and businesses as a result of changes in citizen composition can aid policy making and understanding the developments of the ever-changing city landscape.

[9] Measuring Ecological Footprint of Cities

Ruchik Patel

EPA @ TPM, TU Delft [Feb 2020 - July 2020]

[8] Large-scale Building Age Classification for Urban Energy Demand Estimation

Oana Garbasevschi

EPA @ TPM, TU Delft [Oct 2019 - Mar 2020]

Urban areas are the biggest consumers of electricity and energy consumption is only likely to increase with rapid urbanization. Out of the urban building stock residential buildings require continuous supply of energy for space heating and appliances. To answer to this demand in a sustainable way, policy makers need to design energy efficiency strategies that must rely on accurate and traceable models. These models estimate energy demand based on a series of building features, out of which building age is of prime importance because it predicts the insulation properties of the building. To support the energy modelling process, we propose a method of automatically identifying building age from spatial data at a large scale. We identify features of buildings that are significant for age prediction and determine which set of features has best prediction power at a national scale, in Germany. It is expected that the accuracy of classification will be strongly related to sampling design and data availability. The final results will be used to identify the impact of misclassification errors on estimating energy use in urban energy models, providing in this manner a measure of the reliability of such models.

[7] Quantifying Hierarchy in Public Transport Networks: Developing a New Metric

Abel Buijtenweg

TIL @ CiTG, TU Delft [Sep 2019 - Feb 2020]

Due to increasing pressure on the system, the functioning of public transport networks (PTN) in metropolitan areas is crucial for future mobility. Within these networks, hierarchical levels can be distinguished where diff erent levels have di erent functions. These hierarchical levels can be analyzed but there is no way to quantitatively determine the hierarchy in a PTN. Therefore, this paper presents a metric to quantify the hierarchy in PTN to increase the understanding of these complex networks. In order to determine the hierarchy, a metric is developed based on a combined topological and empirical approach. The metric is a multiplication of three di erent elements which are the topological influence, (non-)redundancy and transfer potential. Together these elements are applied to de fine the hierarchical degree of nodes in a network. Furthermore, to determine the hierarchy of a network as a whole, a hierarchical coefficient, based on the distribution and inequality of the hierarchical degree in the network is developed. The metric has been applied to case-studies for the Dutch cities of Amsterdam and Rotterdam which allows for diff erent state and cross-network comparison. The results show some expected yet non-trivial results identifying di erent patterns in network structures for network states and di fferent spatial distribution of hierarchy between networks. Furthermore, by dividing the network into functional levels, a hierarchical structure can be identifi ed. Throughout this study, a new method to quantify hierarchy in PTN, based on di erent approaches, is developed which can be seen as the most important contribution of this research. While this study explores the implications of this metric, it can be applied in numerous diff erent contexts. Furthermore, in potential the metric has numerous network related applications such as reducing vulnerability and solving bottlenecks.

[6] Riverine Flood Risk Screening with a Simple Network-based Approach

Bram van Meurs

EPA @ TPM, TU Delft [Aug - Dec 2019]

Changes in climate conditions lead to unanticipated variations in glacial runoffs, snowmelt and precipitation, both significantly changing river flows. An imbalance in river network equilibrium leads to flooding and often ends up causing tremendous damage to society and environment. Regions that are perceived to be downstream from the source of flooding may in fact end up taking the brunt of the river force due to flood cascades. However, most studies cater to flood risk . We propose to devise a novel methodology to map rivers as unidirectional networks using river network geometry and scaling relationships fundamental to its tree-structure. Following that, we aim to convert the unidirectional flow networks to Bayesian belief networks calibrated by precipitation data and changes in glacial terrain at the source. Thus, our goal is to develop a likelihood map of excessive flooding around river networks that takes cascading into account based on drainage basin topography and network effects of river streams. A posterior inference of flooding around river streams would arm policy initiatives with strong evidence to develop safeguarding mechanisms for life and property in good time.

[5] Identification of the Hierarchy in Public Transport Networks based on Passenger Flow Patterns

Ziyulong Wang

CiTG, TU Delft [Apr - June 2019]

In this study, a data-driven, generic and transfer-based methodology for separation and ranking the PTNs has been put forward. With the hierarchy of a network, this is beneficiary for the management and operation of operators for focusing on the higher level network layer and in turn provide better service for passengers. The study introduces three steps to rank the hierarchy of a PTN: (1) using the passenger journey and ride data to derive transfer flow matrix; (2) applying C-space network representation with community detection method to separate and visualize the PTN layer; (3) performing ranking method, regarding inner- and intra- transfer flow. To this end, the hierarchy of a PTN could be presented with temporal attributes. Different day of week and various time period of a day could potentially yield different hierarchy. The proposed unsupervised learning algorithm is based on passenger transfer flow data, independent from geographic location and the mode of transportation. The study shows that the level is changing based on the selected time slot and can be a mixture of different modes, which is dissimilar from the hierarchy purely based on qualitative method.

[4] The Structural DNA of Cities

Franziska Krummenacher

ETH Zurich [Apr 2018 - Mar 2019]

Since cities are growing faster than ever, city planning is crucial to maintain a fully functional and efficient infrastructure. However, still no comprehensive city model exists that is able to explain the structure of today’s cities and predict their future. In order to take a small step towards developing such a model, we aim at identifying the basic building blocks of cities. This thesis proposes a data-driven approach towards city modelling using unsupervised clustering techniques. Complete city maps of 251 cities worldwide are analyzed. First, clustering is conducted on scalar features and a similarity measure between cities. We show that although we obtain reasonable clustering results, this approach is unsuitable for the identification of the fundamental elements of cities. In the second part, we focus on network motifs in city graphs and also use latent Dirichlet allocation, a technique from natural language processing, for in-depth city analysis based on network subgraphs and motifs.

[3] Transit Ridership: Methods in Urban Studies and Transit Planning

Itto Kornecki

ETH Zurich [Sep 2018 - Jan 2019]

With the advent of Automatic Fare Collection in transit networks, there has been a dramatic rise in the availability of transit data. In this work, we show that this data can be used to reveal information about the urban structure and the accessibility of the rail network. Specifically, we analyze the diurnal ridership of the Transit for London underground stations in order to describe the urban structure of London and to quantify the suitability of the network for daily commuters. By removing the conventional dependence on origin-destination trajectories, our methods can be expanded to other transit networks, such as bus and tram. Our work serves as an easily applicable planning tool for urban planners and transit agencies.

[2] Impact of Perceived Distances on International Tourism

Luís Rebelo

FCUL, University of Lisbon [May - Oct 2018]

Worldwide tourism revenues have tripled in the last decade. Yet, there is a gap in our understanding of how distances shape peoples’ travel choices. To understand global tourism patterns we map the flow of tourists around the world onto a complex network and study the impact of two types of distances, geographical and through the World Airline Network, a major infrastructure for tourism. We find that although the World Airline Network serves as infrastructural support for the International Tourism Network, the flow of tourism does not correlate strongly with the extent of flight connections available worldwide. Instead, unidirectional flows appear locally forming communities that shed light on global travelling behaviour since there is only a $15%$ probability of finding bidirectional tourism between a pair of countries. We find that most tourists travel to neighbouring countries and mainly cover larger distances when there is a direct flight, irrespective of the time it takes. This may be a consequence of one-way cyclic tourism that we uncover by analysing the triangles that are formed by the network of flows in the International Tourism Network.

[1] Modeling and Characterizing the Core-Periphery Structure of the World Airline Network

Fabian Russmann

ETH Zurich [Feb - Aug 2014]

The stability and efficiency of the global network of commercial airline con-nections has become a vital part of our globalized society. Going beyond empirical analysis, we present here a model trying to understand the forma-tion of the world airline network (WAN) from basic principles. In an iterative algorithm, our model employs two opposing forces: A passenger’s desire to fly on non-stop flights whenever possible and an airline’s strive to maximize profitability of each connection. As a function of a profitability threshold, we identify three distinct families of networks with a fully-connected, a core-periphery, and a tree-like structure, respectively, as outputs of this algorithm. Characterizing the regimes using several different metrics, we show that our model is able to recreate the unique core-periphery structure of the empir-ical WAN. Remarkably, in this regime of networks, the passenger load on each flight (airlines’ profitability) is maximized while the average shortest path (passengers’ convenience) stays stable. However, comparing results of a connectivity robustness analysis, we also find that the modeled networks are more robust than the real-world network, suggesting that further develop-ment of our model may help to improve the current state of the world airline network.